Local delivery of rhVEGF165 through biocoated nHA/coral block grafts in critical-sized dog mandible defects: a histological study at the early stages of bone healing.
نویسندگان
چکیده
Alveolar defects of a critical size cannot heal completely without grafting. Thus, they represent a major clinical challenge to reconstructive surgery. Numerous types of grafts have been used to improve bone regeneration. In the case of particle grafts, the capacity for volume rebuilding and space maintaining is still not ideal, particularly for critical-sized bone defects. Although porous block grafts can overcome the above problems of particle grafts, they are still not widely used for critical-sized alveolar defects, because of their reduced efficacy in blood vessel and bone formation. Thus, in the present study, nano-hydroxyapatite/coralline (nHA/coral) blocks were pre-vascularized by coating them with vascular endothelial growth factor (VEGF), and then implanted in dogs with critical-sized mandibular defects. This model has possible applications in orthopedic and implant surgery. In vivo results indicate that the nHA/coral blocks allow cell and collagen ingrowth because of their suitable pore size and interconnectivity of pores. In addition, pre-vascularization properties were obtained by coating the scaffolds with VEGF. Histological and immunohistochemical examinations, as well as fluorescence analysis, revealed that the local delivery of VEGF can significantly improve neovascularization and mineralization of newly formed bone at the early stages of bone healing in this dog implantation model. Our data collectively show that nHA/coral blocks have possible applications in bone tissue engineering, and excellent results can be achieved by pre-vascularization with VEGF.
منابع مشابه
Angiogenesis and bone regeneration of porous nano-hydroxyapatite/coralline blocks coated with rhVEGF165 in critical-size alveolar bone defects in vivo
To improve the regenerative performance of nano-hydroxyapatite/coralline (nHA/coral) block grafting in a canine mandibular critical-size defect model, nHA/coral blocks were coated with recombinant human vascular endothelial growth factor(165) (rhVEGF) via physical adsorption (3 μg rhVEGF165 per nHA/coral block). After the nHA/coral blocks and VEGF/nHA/coral blocks were randomly implanted into t...
متن کاملEvaluation of the effects of autologous adipose derived mesenchymal stem cells in combination with polyacrylamide hydrogel and nanohydroxyapatite scaffolds on healing in rabbit critical-sized radial bone defect model
Objective: In this study, the bone regeneration ability of polyacrylamide hydrogel and nanohydroxyapatite scaffolds (PAAH/NHA) and stem cells derived from adipose tissue (ADSCs) in the healing of critical sized bone defects in rabbit radius were assessed. Animals and procedures: 12 New Zealand white male rabbits were divided into 3 groups. The rabbits were anesthetized and 15 mm bone def...
متن کاملConcurrent Use of Greater Omentum with Persian Gulf Coral on Bone Healing in Dog: a Radiological and Histopathological Study
Objective- To evaluate the role of greater omentum incorporation of coral in healing of the long bone defect in dog model. Design- Experimental in-vivo study. Animals- Sixteen adult mongrel male dogs weighing 26.2±2.5 kg, free of evident infectious or parasitic illnesses were used in this study. Procedures- The operative procedure was undertaken under general anesthesia. Radial bone was expo...
متن کاملElastic cartilage grafting in canine radial fracture
Bone has a capability to repair itself when it is fractured. Repair involves the generation of intermediatetissues, such as fibrous connective tissue, cartilage and woven bone, before final bone healing can occur. Theprocess of cartilage-to-bone transition (CBT) is a key for the achievement of rigid bone healing duringfracture repair. We tested this potential for elastic cartilage using a long ...
متن کاملReconstructionof Human Mandibular Continuity Defects with Allogenic Scaffold and Autologousmarrow Mesenchymal Stem Cells
Background Mandibular continuity defects occur after tumor resection, maxillofacial injury, or osteomyelitis. Despite the current availability of a plethora of treatment modalities, bone substitutes, and various clinical adjuncts, an exact reconstructive recapitulation of large bony defects continues to be beyond reach. In this clinical pilot study, we report a novel method for reconstruction ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of clinical and experimental medicine
دوره 8 4 شماره
صفحات -
تاریخ انتشار 2015